organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

6-Methoxy-1'-methyl-4'-phenylchroman-3-spiro-3'-pyrrolidine-2'-spiro-3"(2"H)indole-2",4-dione

T. Augustine,^a* Charles C. Kanakam,^b R. Suresh,^a Y. Christurajan^a and V. Ramkumar^c

^aDepartment of Chemistry, Presidency College, Chennai, Tamil Nadu, India, ^bDepartment of Chemistry, Valliammai Engineering College, SRM Nagar, Chennai, Tamil Nadu, India, and ^cDepartment of Chemistry, Indian Institute of Technology, Chennai 600 036, India

Correspondence e-mail: a_ugi@yahoo.com

Received 1 July 2007; accepted 6 August 2007

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.002 Å; R factor = 0.043; wR factor = 0.115; data-to-parameter ratio = 17.7.

The title compound, C₂₇H₂₄N₂O₄, has been synthesized as a potential pharmacologically active compound. All bond lengths and angles are within normal ranges and the molecules are linked into centrosymmetric $R_2^2(14)$ dimers by a simple N-H···O interaction. The packing is stabilized through intermolecular N-H···O hydrogen bonds and van der Waals interactions.

Related literature

For related literature, see: Abdul Ajees et al. (2001); Bernstein et al. (1995); Deshong & Leginus (1983); Fujimori (1990); Henrickson & Silva (1962); James et al. (1991).

Experimental

Crystal data C27H24N2O4 $M_r = 440.48$

Monoclinic, $P2_1/n$ a = 9.2244 (2) Å

b = 26.1163 (5) Å Mo $K\alpha$ radiation $\mu = 0.09 \text{ mm}^{-1}$ c = 9.3506 (2) Å $\beta = 103.233 \ (1)^{\circ}$ T = 295 (2) K V = 2192.81 (8) Å³ $0.23 \times 0.21 \times 0.15$ mm Z = 4

Data collection

Bruker SMART CCD area-detector	27791 measured reflections
diffractometer	5379 independent reflections
Absorption correction: multi-scan	3670 reflections with $I > 2\sigma(I)$
(Blessing, 1995)	$R_{\rm int} = 0.032$
$T_{\min} = 0.899, \ T_{\max} = 0.987$	

Refinement

$D[T^2, 2, (T^2)] = 0.042$	II at a way to a start of here a substance of
$R[F > 2\sigma(F)] = 0.043$	H atoms treated by a mixture of
$wR(F^2) = 0.115$	independent and constrained
S = 1.02	refinement
5379 reflections	$\Delta \rho_{\rm max} = 0.24 \text{ e} \text{ Å}^{-3}$
304 parameters	$\Delta \rho_{\rm min} = -0.18 \text{ e} \text{ Å}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N2-H2\cdots O3^{i}$	0.878 (18)	2.167 (19)	3.0401 (16)	172.8 (16)
Symmetry code: (i)	-x + 1, -y, -z			

x + 1, -y,

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2; data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

The authors thank the Department of Chemistry, IIT Madras, Chennai, India, for the single-crystal X-ray diffraction data collection.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BX2097).

References

- Abdul Ajees, A., Parthasarathy, S., Manikandan, S. & Raghunathan, R. (2001). Acta Crvst. C57, 473-475.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
- Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
- Bruker (2004). APEX2 (Version 2.0-2) and SAINT-Plus (Version 7.06a). Bruker AXS Inc., Madison, Wisconsin, USA.
- Deshong, P. & Leginus, J. M. (1983). J. Am. Chem. Soc. 105, 1686-1688.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Fujimori, S. (1990). Chem. Abstr. 112, 98409.
- Henrickson, J. B. & Silva, R. A. (1962). J. Am. Chem. Soc. 34, 643-650.
- James, D. M., Kunze, H. B. & Faulkner, D. J. (1991). J. Nat. Prod. 54, 1137-1140.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Acta Cryst. (2007). E63, o3794 [doi:10.1107/S1600536807038755]

6-Methoxy-1'-methyl-4'-phenylchroman-3-spiro-3'-pyrrolidine-2'-spiro-3''(2''*H*)- indole-2'',4-di-one

T. Augustine, C. C. Kanakam, R. Suresh, Y. Christurajan and V. Ramkumar

Comment

Spiroheterocycles represent an important class of naturally occurring substances characterized by their highly pronounced biological activities (James *et al.*, 1991) Highly substituted pyrrolidines have gained much prominence since they form the central skeleton of many natural products and pharmacologically active compounds. (Deshong & Leginus, 1983). Pyrrolid-ine and oxindole alkaloids (Fujimori, 1990) constitute another class of compounds with significant biological activity which are normally found in rhyncophylline, corynoxeine, nitraphylline, vincatine, horsifiline,*etc* (Henrickson & Silva, 1962).

In the crystal structure of the title compound, $C_{27}H_{24}N_2O_4$, the chromanone moiety consists of a methoxy benzene ring fused with a six membered heterocyclic ring which adopts a sofa conformation (Abdul Ajees *et al.*, 2001). The five membered spiropyrrolidine ring is in an envelope conformation. The oxindole and phenyl rings attached to the five membered rings are nearly perpendicular to each other. The molecules are linked into centrosymmetric $R_2^2(14)$ dimmer by a simple N—H…O interaction (Bernstein *et al.*, 1995)

Experimental

A mixture of Isatin (1*H*-indole-2,3-dione) (1 mmol, 0.082 g), Sarcosine (2-methylaminoacetic acid) (1 mmol, 0.046 g) and the dipolarophile (3-arylidene-4-chromanone) (1 mmol, 0.2 g) in aqueous methanol (20 ml) was refluxed for 5 h and was subsequently monitored by TLC for the disappearance of starting materials. The solvent was removed under reduced pressure and the crude product was purified by column chromatography using silica gel and hexane–ethyl acetate (5:1) as eluent to give the cycloadduct.

Refinement

All the H atoms were geometrically fixed at chemically meaningful positions. The hydrogen atoms of the phenyl ring were allowed to ride at a distance of 0.93 Å from the parent carbons and their thermal parameter were fixed at 1.2 times that of the parent atom.

The secondary CH_2 H atoms were fixed at a distance of 0.97 Å from the parent atom and their thermal parameters were fixed at 1.2 times the parent atom.

The CH_3 H atoms attached to Nitrogen were fixed at a distance of 0.96 Å from the parent atom and their thermal parameters were fixed at 1.5 times the parent atom. similarly the CH_3 H atoms attached to Oxygen were fixed at a distance of 0.96 Å from the parent atom and their thermal parameters were fixed at 1.5 times the parent atom. Figures

Fig. 1. *ORTEP* representation of the molecule showing the atom numbering scheme. Thermal ellipsoids are drawn with 30% probability.

Fig. 2. Packing diagram of title compound projected down the C-axis

6-Methoxy-1'-methyl-4'-phenylchroman-3-spiro-3'-pyrrolidine-2'-spiro-3''(2"H)- indole-2",4-dione

Crystal data	
$C_{27}H_{24}N_2O_4$	$F_{000} = 928$
$M_r = 440.48$	$D_{\rm x} = 1.334 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2yn	Cell parameters from 8137 reflections
a = 9.2244 (2) Å	$\theta = 2.4 - 26.8^{\circ}$
<i>b</i> = 26.1163 (5) Å	$\mu = 0.09 \text{ mm}^{-1}$
c = 9.3506 (2) Å	T = 295 (2) K
$\beta = 103.2330 \ (10)^{\circ}$	Rectangular, colourless
$V = 2192.81 (8) \text{ Å}^3$	$0.23\times0.21\times0.15~mm$
Z = 4	

Data collection

Bruker SMART CCD area-detector diffractometer	5379 independent reflections
Radiation source: fine-focus sealed tube	3670 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.032$
T = 295(2) K	$\theta_{\text{max}} = 28.4^{\circ}$
ϕ and ω scans	$\theta_{\min} = 1.6^{\circ}$
Absorption correction: multi-scan (Blessing, 1995)	$h = -11 \rightarrow 12$
$T_{\min} = 0.899, T_{\max} = 0.987$	$k = -34 \rightarrow 34$
27791 measured reflections	$l = -12 \rightarrow 10$

Refinement

Refinement on F^2

Secondary atom site location: difference Fourier map

Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.043$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.115$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0481P)^{2} + 0.486P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
S = 1.02	$(\Delta/\sigma)_{max} < 0.001$
5379 reflections	$\Delta \rho_{max} = 0.24 \text{ e } \text{\AA}^{-3}$
304 parameters	$\Delta \rho_{\rm min} = -0.18 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and *R*-factors based on ALL data will be even larger.

The reflections with Bragg angle less than 2.4° could not be collected due to the hinderence of the beam stop. This lead to the absence of 14 low angle reflections from the measured data. As *b* axis length is quite large (26.116 Å) for the wave length used (0.71073 Å), it became unavoidable. Except for these missing low angle reflections, the data set is complete with in 50° two theta.

	x	У	Z	$U_{\rm iso}$ */ $U_{\rm eq}$
C1	0.25225 (16)	0.09504 (5)	0.02539 (14)	0.0343 (3)
C2	0.34793 (15)	0.14452 (5)	0.00669 (13)	0.0312 (3)
C3	0.23382 (16)	0.17999 (5)	-0.09708 (14)	0.0338 (3)
Н3	0.1920	0.2025	-0.0330	0.041*
C4	0.11035 (18)	0.14375 (6)	-0.16772 (16)	0.0445 (4)
H4A	0.0178	0.1619	-0.2058	0.053*
H4B	0.1367	0.1242	-0.2463	0.053*
C5	0.30377 (17)	0.04717 (5)	-0.05042 (16)	0.0401 (3)
C6	0.31749 (17)	0.02527 (5)	0.18915 (16)	0.0392 (3)
C7	0.3394 (2)	-0.00243 (6)	0.31793 (19)	0.0552 (4)
H7	0.3771	-0.0356	0.3237	0.066*
C8	0.3033 (2)	0.02077 (7)	0.43793 (19)	0.0640 (5)
H8	0.3183	0.0031	0.5264	0.077*
C9	0.2459 (2)	0.06933 (8)	0.4293 (2)	0.0639 (5)
Н9	0.2210	0.0840	0.5111	0.077*
C10	0.2246 (2)	0.09686 (7)	0.29919 (18)	0.0512 (4)
H10	0.1848	0.1297	0.2932	0.061*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

C11	0.26312 (16)	0.07498 (5)	0.17921 (15)	0.0366 (3)
C12	0.40941 (16)	0.16912 (5)	0.15696 (14)	0.0343 (3)
C13	0.48437 (16)	0.13335 (5)	-0.05463 (15)	0.0364 (3)
H13A	0.4520	0.1199	-0.1535	0.044*
H13B	0.5375	0.1651	-0.0601	0.044*
C14	0.74957 (18)	0.08581 (6)	0.26498 (18)	0.0462 (4)
H14	0.8021	0.0620	0.2227	0.055*
C15	0.79350 (18)	0.09709 (6)	0.41191 (19)	0.0514 (4)
H15	0.8757	0.0805	0.4693	0.062*
C16	0.71684 (18)	0.13301 (6)	0.47627 (16)	0.0452 (4)
C17	0.59566 (17)	0.15788 (6)	0.39204 (15)	0.0403 (3)
H17	0.5452	0.1824	0.4342	0.048*
C18	0.54837 (16)	0.14622 (5)	0.24221 (15)	0.0348 (3)
C19	0.62592 (16)	0.11033 (5)	0.18011 (15)	0.0369 (3)
C20	0.6949 (2)	0.17725 (8)	0.69199 (18)	0.0620 (5)
H20A	0.7026	0.2104	0.6497	0.093*
H20B	0.7393	0.1783	0.7954	0.093*
H20C	0.5918	0.1679	0.6772	0.093*
C21	0.29494 (16)	0.21463 (5)	-0.19882 (15)	0.0356 (3)
C22	0.38359 (19)	0.25574 (6)	-0.14124 (19)	0.0512 (4)
H22	0.4076	0.2608	-0.0401	0.061*
C23	0.4371 (2)	0.28933 (7)	-0.2299 (2)	0.0655 (5)
H23	0.4968	0.3166	-0.1882	0.079*
C24	0.4031 (2)	0.28291 (7)	-0.3794 (2)	0.0645 (5)
H24	0.4397	0.3056	-0.4393	0.077*
C25	0.3146 (2)	0.24280 (8)	-0.4395 (2)	0.0660 (5)
H25	0.2905	0.2382	-0.5408	0.079*
C26	0.2605 (2)	0.20884 (6)	-0.34931 (17)	0.0523 (4)
H26	0.2000	0.1818	-0.3914	0.063*
C27	-0.0093 (2)	0.06977 (7)	-0.0786 (2)	0.0661 (5)
H27A	-0.1068	0.0841	-0.1136	0.099*
H27B	-0.0073	0.0499	0.0081	0.099*
H27C	0.0145	0.0482	-0.1532	0.099*
N1	0.10004 (14)	0.11104 (5)	-0.04404 (14)	0.0428 (3)
N2	0.33944 (15)	0.00992 (5)	0.05262 (14)	0.0447 (3)
01	0.30669 (15)	0.04317 (4)	-0.17904 (12)	0.0583 (3)
O2	0.34710 (13)	0.20420 (4)	0.20365 (11)	0.0502 (3)
O3	0.58380 (11)	0.09720 (4)	0.03378 (10)	0.0406 (2)
O4	0.76976 (14)	0.14063 (5)	0.62380 (12)	0.0631 (4)
H2	0.369 (2)	-0.0207 (7)	0.0335 (18)	0.056 (5)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0353 (8)	0.0335 (7)	0.0331 (7)	0.0026 (6)	0.0057 (6)	0.0026 (5)
C2	0.0316 (7)	0.0319 (7)	0.0283 (6)	0.0027 (5)	0.0034 (5)	0.0017 (5)
C3	0.0340 (8)	0.0341 (7)	0.0312 (7)	0.0030 (6)	0.0031 (6)	0.0031 (5)
C4	0.0405 (9)	0.0435 (8)	0.0434 (8)	-0.0033 (7)	-0.0028 (7)	0.0106 (6)

C5	0.0416 (9)	0.0377 (8)	0.0408 (8)	-0.0044 (6)	0.0089 (6)	-0.0043 (6)
C6	0.0375 (8)	0.0360 (7)	0.0423 (8)	-0.0003 (6)	0.0052 (6)	0.0051 (6)
C7	0.0607 (12)	0.0438 (9)	0.0566 (10)	0.0029 (8)	0.0042 (8)	0.0178 (8)
C8	0.0752 (14)	0.0695 (12)	0.0444 (9)	-0.0103 (10)	0.0080 (9)	0.0191 (9)
C9	0.0805 (14)	0.0718 (13)	0.0456 (10)	-0.0028 (10)	0.0274 (9)	0.0062 (9)
C10	0.0603 (11)	0.0508 (9)	0.0486 (9)	0.0088 (8)	0.0251 (8)	0.0042 (7)
C11	0.0359 (8)	0.0366 (7)	0.0377 (7)	0.0028 (6)	0.0088 (6)	0.0067 (6)
C12	0.0360 (8)	0.0350 (7)	0.0309 (7)	0.0034 (6)	0.0059 (6)	0.0001 (5)
C13	0.0372 (8)	0.0371 (7)	0.0342 (7)	0.0035 (6)	0.0068 (6)	0.0017 (6)
C14	0.0381 (9)	0.0403 (8)	0.0555 (9)	0.0088 (7)	0.0010(7)	-0.0036(7)
C15	0.0391 (9)	0.0468 (9)	0.0577 (10)	0.0070 (7)	-0.0110 (7)	0.0040 (7)
C16	0.0424 (9)	0.0450 (8)	0.0400 (8)	-0.0017 (7)	-0.0076 (7)	0.0000 (6)
C17	0.0397 (9)	0.0397 (8)	0.0373 (7)	0.0019 (6)	0.0001 (6)	-0.0027 (6)
C18	0.0324 (8)	0.0347 (7)	0.0343 (7)	0.0009 (6)	0.0017 (6)	0.0001 (5)
C19	0.0325 (8)	0.0356 (7)	0.0395 (7)	-0.0003 (6)	0.0020 (6)	-0.0011 (6)
C20	0.0552 (12)	0.0884 (14)	0.0374 (9)	-0.0034 (10)	0.0002 (8)	-0.0058 (9)
C21	0.0361 (8)	0.0329 (7)	0.0364 (7)	0.0063 (6)	0.0056 (6)	0.0056 (5)
C22	0.0531 (11)	0.0486 (9)	0.0514 (9)	-0.0090 (8)	0.0108 (8)	0.0020(7)
C23	0.0593 (12)	0.0541 (11)	0.0840 (14)	-0.0137 (9)	0.0184 (10)	0.0117 (10)
C24	0.0611 (12)	0.0623 (12)	0.0771 (13)	0.0105 (10)	0.0303 (10)	0.0346 (10)
C25	0.0859 (15)	0.0689 (12)	0.0454 (10)	0.0115 (11)	0.0198 (9)	0.0215 (9)
C26	0.0691 (12)	0.0464 (9)	0.0386 (8)	-0.0006 (8)	0.0066 (8)	0.0062 (7)
C27	0.0445 (11)	0.0580 (11)	0.0868 (14)	-0.0137 (8)	-0.0037 (9)	0.0233 (10)
N1	0.0331 (7)	0.0415 (7)	0.0501 (7)	-0.0029 (5)	0.0016 (5)	0.0129 (5)
N2	0.0542 (9)	0.0291 (6)	0.0512 (8)	0.0048 (6)	0.0128 (6)	-0.0010 (6)
01	0.0835 (9)	0.0523 (7)	0.0413 (6)	-0.0062 (6)	0.0193 (6)	-0.0107 (5)
O2	0.0557 (7)	0.0523 (6)	0.0382 (6)	0.0214 (5)	0.0016 (5)	-0.0078 (5)
O3	0.0389 (6)	0.0404 (5)	0.0406 (5)	0.0098 (4)	0.0053 (4)	-0.0045 (4)
O4	0.0609 (8)	0.0731 (8)	0.0417 (6)	0.0111 (6)	-0.0166 (6)	-0.0063 (6)

Geometric parameters (Å, °)

C1—N1	1.4663 (18)	C14—C15	1.372 (2)
C1—C11	1.5124 (18)	C14—C19	1.388 (2)
C1—C5	1.5638 (19)	C14—H14	0.9300
C1—C2	1.5970 (19)	C15—C16	1.392 (2)
C2—C13	1.5258 (19)	С15—Н15	0.9300
C2—C12	1.5309 (18)	C16—O4	1.3685 (18)
C2—C3	1.5620 (18)	C16—C17	1.374 (2)
C3—C4	1.511 (2)	C17—C18	1.4022 (19)
C3—C21	1.5123 (19)	С17—Н17	0.9300
С3—Н3	0.9800	C18—C19	1.3847 (19)
C4—N1	1.4583 (18)	C19—O3	1.3774 (16)
C4—H4A	0.9700	C20—O4	1.414 (2)
C4—H4B	0.9700	C20—H20A	0.9600
C5—O1	1.2136 (17)	C20—H20B	0.9600
C5—N2	1.3558 (19)	C20—H20C	0.9600
C6—C7	1.379 (2)	C21—C26	1.378 (2)
C6—C11	1.387 (2)	C21—C22	1.382 (2)

C6—N2	1.3964 (19)	C22—C23	1.374 (2)
С7—С8	1.381 (3)	C22—H22	0.9300
С7—Н7	0.9300	C23—C24	1.371 (3)
C8—C9	1.369 (3)	C23—H23	0.9300
С8—Н8	0.9300	C24—C25	1.367 (3)
C9—C10	1.388 (2)	C24—H24	0.9300
С9—Н9	0.9300	C25—C26	1.393 (2)
C10—C11	1.376 (2)	C25—H25	0.9300
С10—Н10	0.9300	C26—H26	0.9300
C12—O2	1.2147 (16)	C27—N1	1.461 (2)
C12—C18	1.4726 (19)	C27—H27A	0.9600
C13—O3	1.4384 (16)	C27—H27B	0.9600
C13—H13A	0.9700	С27—Н27С	0.9600
C13—H13B	0.9700	N2—H2	0.878 (18)
N1—C1—C11	111.60 (11)	C15—C14—H14	120.4
N1—C1—C5	112.75 (11)	C19—C14—H14	120.4
C11—C1—C5	101.15 (11)	C14—C15—C16	120.98 (14)
N1—C1—C2	102.60 (10)	C14—C15—H15	119.5
C11—C1—C2	117.80 (11)	С16—С15—Н15	119.5
C5—C1—C2	111.37 (11)	O4—C16—C17	124.37 (15)
C13—C2—C12	105.13 (11)	O4—C16—C15	115.76 (14)
C13—C2—C3	112.11 (11)	C17—C16—C15	119.86 (14)
C12—C2—C3	112.14 (11)	C16—C17—C18	119.74 (14)
C13—C2—C1	114.24 (11)	С16—С17—Н17	120.1
C12—C2—C1	109.69 (10)	C18—C17—H17	120.1
C3—C2—C1	103.71 (10)	C19—C18—C17	119.58 (13)
C4—C3—C21	116.86 (11)	C19—C18—C12	121.14 (12)
C4—C3—C2	103.50 (11)	C17—C18—C12	119.06 (12)
C21—C3—C2	116.76 (11)	O3—C19—C18	121.99 (12)
С4—С3—Н3	106.3	O3—C19—C14	117.46 (13)
С21—С3—Н3	106.3	C18—C19—C14	120.55 (13)
С2—С3—Н3	106.3	O4—C20—H20A	109.5
N1—C4—C3	101.52 (11)	O4—C20—H20B	109.5
N1—C4—H4A	111.5	H20A-C20-H20B	109.5
C3—C4—H4A	111.5	O4—C20—H20C	109.5
N1—C4—H4B	111.5	H20A—C20—H20C	109.5
C3—C4—H4B	111.5	H20B-C20-H20C	109.5
H4A—C4—H4B	109.3	C26—C21—C22	117.43 (14)
O1—C5—N2	125.84 (14)	C26—C21—C3	123.00 (13)
O1—C5—C1	126.59 (13)	C22—C21—C3	119.50 (13)
N2	107.52 (12)	C23—C22—C21	121.54 (17)
C7—C6—C11	121.86 (14)	C23—C22—H22	119.2
C7—C6—N2	128.65 (14)	C21—C22—H22	119.2
C11—C6—N2	109.47 (12)	C24—C23—C22	120.48 (18)
C6—C7—C8	117.69 (16)	С24—С23—Н23	119.8
С6—С7—Н7	121.2	С22—С23—Н23	119.8
С8—С7—Н7	121.2	C25—C24—C23	119.24 (16)
C9—C8—C7	121.33 (16)	C25—C24—H24	120.4
С9—С8—Н8	119.3	C23—C24—H24	120.4

С7—С8—Н8	119.3	C24—C25—C26	120.14 (17)
C8—C9—C10	120.46 (17)	С24—С25—Н25	119.9
С8—С9—Н9	119.8	С26—С25—Н25	119.9
С10—С9—Н9	119.8	C21—C26—C25	121.17 (16)
C11—C10—C9	119.22 (16)	C21—C26—H26	119.4
C11—C10—H10	120.4	С25—С26—Н26	119.4
С9—С10—Н10	120.4	N1—C27—H27A	109.5
C10—C11—C6	119.40 (13)	N1—C27—H27B	109.5
C10-C11-C1	131.16 (13)	H27A—C27—H27B	109.5
C6—C11—C1	109.40 (12)	N1—C27—H27C	109.5
O2-C12-C18	122.46 (12)	H27A—C27—H27C	109.5
O2—C12—C2	122.69 (12)	Н27В—С27—Н27С	109.5
C18—C12—C2	114.84 (11)	C4—N1—C27	115.06 (13)
O3—C13—C2	112.44 (11)	C4—N1—C1	106.76 (11)
O3—C13—H13A	109.1	C27—N1—C1	115.48 (12)
C2	109.1	C5—N2—C6	112.41 (12)
O3—C13—H13B	109.1	C5—N2—H2	123.1 (11)
C2-C13-H13B	109.1	C6—N2—H2	124.4 (11)
H13A—C13—H13B	107.8	C19—O3—C13	113.90 (10)
C15—C14—C19	119.28 (14)	C16—O4—C20	117.03 (13)
N1—C1—C2—C13	-131.28 (11)	C1—C2—C13—O3	-57.31 (15)
C11—C1—C2—C13	105.74 (13)	C19—C14—C15—C16	-0.6 (3)
C5—C1—C2—C13	-10.42 (15)	C14—C15—C16—O4	179.25 (15)
N1—C1—C2—C12	111.00 (12)	C14—C15—C16—C17	-0.3 (3)
C11—C1—C2—C12	-11.98 (16)	O4—C16—C17—C18	-178.35 (15)
C5—C1—C2—C12	-128.14 (12)	C15—C16—C17—C18	1.2 (2)
N1—C1—C2—C3	-8.95 (13)	C16—C17—C18—C19	-1.1 (2)
C11—C1—C2—C3	-131.93 (12)	C16—C17—C18—C12	173.62 (14)
C5—C1—C2—C3	111.90 (12)	O2—C12—C18—C19	-172.56 (14)
C13—C2—C3—C4	104.93 (13)	C2—C12—C18—C19	8.73 (19)
C12—C2—C3—C4	-137.07 (12)	O2—C12—C18—C17	12.8 (2)
C1—C2—C3—C4	-18.80 (13)	C2-C12-C18-C17	-165.90 (12)
C13—C2—C3—C21	-24.98 (16)	C17—C18—C19—O3	179.60 (13)
C12—C2—C3—C21	93.02 (14)	C12—C18—C19—O3	5.0 (2)
C1—C2—C3—C21	-148.71 (11)	C17—C18—C19—C14	0.2 (2)
C21—C3—C4—N1	169.87 (12)	C12—C18—C19—C14	-174.45 (14)
C2—C3—C4—N1	40.03 (14)	C15—C14—C19—O3	-178.76 (14)
N1-C1-C5-01	56.5 (2)	C15—C14—C19—C18	0.7 (2)
C11—C1—C5—O1	175.82 (15)	C4—C3—C21—C26	-10.6 (2)
C2—C1—C5—O1	-58.19 (19)	C2—C3—C21—C26	112.71 (16)
N1—C1—C5—N2	-121.14 (13)	C4—C3—C21—C22	166.10 (14)
C11—C1—C5—N2	-1.84 (15)	C2—C3—C21—C22	-70.64 (17)
C2-C1-C5-N2	124.15 (12)	C26—C21—C22—C23	-0.7 (2)
C11—C6—C7—C8	0.8 (3)	C3—C21—C22—C23	-177.56 (16)
N2-C6-C7-C8	-177.26 (16)	C21—C22—C23—C24	0.2 (3)
C6-C7-C8-C9	0.9 (3)	C22—C23—C24—C25	0.3 (3)
C7—C8—C9—C10	-1.0 (3)	C23—C24—C25—C26	-0.3 (3)
C8—C9—C10—C11	-0.6 (3)	C22—C21—C26—C25	0.8 (2)
C9—C10—C11—C6	2.2 (2)	C3—C21—C26—C25	177.49 (15)

C9—C10—C11—C1	179.56 (16)	C24—C25—C26—C21	-0.3 (3)
C7—C6—C11—C10	-2.4 (2)	C3—C4—N1—C27	-178.03 (14)
N2-C6-C11-C10	176.04 (14)	C3—C4—N1—C1	-48.48 (14)
C7—C6—C11—C1	179.73 (14)	C11—C1—N1—C4	162.45 (12)
N2-C6-C11-C1	-1.85 (17)	C5-C1-N1-C4	-84.51 (14)
N1-C1-C11-C10	-55.2 (2)	C2-C1-N1-C4	35.40 (14)
C5-C1-C11-C10	-175.36 (16)	C11—C1—N1—C27	-68.24 (17)
C2-C1-C11-C10	63.1 (2)	C5—C1—N1—C27	44.80 (18)
N1-C1-C11-C6	122.33 (13)	C2-C1-N1-C27	164.71 (13)
C5-C1-C11-C6	2.20 (15)	O1C5N2C6	-176.80 (15)
C2-C1-C11-C6	-119.38 (13)	C1C5N2C6	0.88 (17)
C13—C2—C12—O2	141.65 (14)	C7—C6—N2—C5	178.87 (16)
C3—C2—C12—O2	19.57 (19)	C11—C6—N2—C5	0.59 (18)
C1—C2—C12—O2	-95.10 (16)	C18—C19—O3—C13	17.24 (19)
C13—C2—C12—C18	-39.64 (15)	C14—C19—O3—C13	-163.30 (13)
C3—C2—C12—C18	-161.72 (12)	C2-C13-O3-C19	-53.20 (15)
C1—C2—C12—C18	83.61 (14)	C17—C16—O4—C20	-1.0 (2)
C12—C2—C13—O3	62.99 (13)	C15-C16-O4-C20	179.47 (15)
C3—C2—C13—O3	-174.93 (10)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
N2—H2···O3 ⁱ	0.878 (18)	2.167 (19)	3.0401 (16)	172.8 (16)
Symmetry codes: (i) $-x+1, -y, -z$.				

